

Catalysis Today 65 (2001) 301-306

Supported MoO₃ catalysts: preparation by the new "slurry impregnation" method and activity in hydrodesulphurization

Miroslav Zdražil*

Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojová 135, 165 02 Prague 6-Suchdol, Czech Republic

Abstract

A new preparation of supported MoO_3 is described. Slurry MoO_3 /water is used instead of the solution $(NH_4)_6Mo_7O_{24}$. Preparation and HDS activity are illustrated for MoO_3 supported over Al_2O_3 , active carbon and ZrO_2 . Another application of the new principle is the preparation of high surface area MoO_3/MgO by the reaction of MgO with slurry $(NH_4)_6Mo_7O_{24}/MgO$ methanol. Texture of MgO that is deteriorated in aqueous solution of $(NH_4)_6Mo_7O_{24}/MgO$ is stable in that slurry. "Slurry impregnation" is a special case of equilibrium adsorption impregnation. It is simple and it provides monolayer dispersion of molybdena. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Supported Mo catalysts; Slurry impregnation; Hydrodesulphurization

1. Introduction

Supported MoO_3 is an important catalyst or catalyst precursor in a number of industrially relevant reactions. The present paper is related to hydrodesulphurization and the catalysts are tested in sulphided form. However, oxide or reduced form is the active form in other reactions such as oxidation, dehydrogenation, oxidative dehydrogenation, isomerization, metathesis, etc. [1].

The conventional method of preparation of the MoO₃/support solids is schematically described in Fig. 1. The support is impregnated with solution of common soluble molybdenum compound, ammonium heptamolybdate, AHM (the solubility is 43 g of AHM per 100 ml of water at room temperature). For the purpose of the present paper, this method can be named "solution impregnation". From the point of view of molybdenum oxide, the procedure starts with

its dissolution in ammonium hydroxide. Ammonia

However, we have found that the use of the helping ammonia ion is not necessary and MoO₃ alone can be used as the impregnation compound (see Fig. 1). The slurry of MoO₃ in water is mixed with support. The solubility of MoO₃ is low (0.1 g MoO₃ per 100 ml of water at room temperature) but sufficient for gradual transport of molybdena species to the surface in pores. The dissolved species are adsorbed and another solid MoO₃ is dissolved. At the end of impregnation all molybdena is deposited; the original solid MoO₃ disappeared and the amount of molybdena present in dissolved form is negligible. The catalyst is dried and it is not necessary to calcinate it. Slurry of the impregnation compound is used instead of its solution and this impregnation method can be named "slurry impregnation".

Supported MoO_3 catalysts belong to the class of the so-called monolayer type catalysts (for review, see for instance [2–4]). Slurry impregnation is a special

E-mail address: zdrazil@icpf.cas.cz (M. Zdražil).

serves as a helping ion that is firstly added to the system and then removed from it by calcination.

However, we have found that the use of the helping

^{*} Fax: +420-2-20920661.

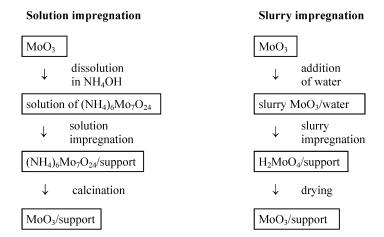


Fig. 1. Schematic comparison of the preparation of MoO₃/support catalysts by conventional solution impregnation and new slurry impregnation.

case of equilibrium adsorption impregnation method (for review of the equilibrium adsorption method see for instance Refs. [3,5]). The maximum amount of MoO₃ that can be deposited by slurry impregnation corresponds to the formation of "saturated adsorption monolayer" (for more detailed discussion see for instance Ref. [5]).

The experience on three systems prepared by the slurry impregnation using slurry MoO₃/water will be summarized in the present paper: MoO₃/alumina, MoO₃/active carbon and MoO₃/zirconia.

The fourth example of the application of slurry impregnation that will be discussed is preparation of MoO₃/MgO catalyst by the reaction of MgO with the slurry AHM/methanol. Ammonia ions are present in that case and the idea of this application will be explained henceforward.

2. MoO₃/Al₂O₃ catalyst

Simplicity of the slurry impregnation is illustrated by the typical preparation of the $15\,\rm wt.\%$ MoO_3/Al_2O_3 catalyst. The slurry of Al_2O_3 (surface area $280\,\rm m^2~g^{-1}$, particle size $0.16\text{--}0.32\,\rm mm$, $15\,\rm g$), MoO_3 (finely ground, $2.7\,\rm g$) and water (60 ml) are heated at $95\text{--}100^{\circ}\mathrm{C}$. The fine grey powder of MoO_3 disappears after about 3–5 h. The catalyst is dried and calcination is not necessary. No waste solution and no calcining nitrogenous gases are produced.

Various shapes of alumina (powder, extrudates) can be impregnated. The impregnation time depends on particle size of the support, loading and temperature. For higher loadings of about 70–100% of the saturated adsorption monolayer, it is about 3–5 days for extrudates (1.5 mm) at room temperature and about 2–3 h for the impregnation in the aqueous paste of finely ground MoO₃ and Al₂O₃ at 95–100°C. The impregnation time is shorter for lower loading.

The catalysts MoO₃/Al₂O₃ of various origin of the starting alumina, shape of alumina, loading, and impregnation temperature were prepared by slurry impregnation in our laboratory. They were characterized by some physico-chemical techniques and their catalytic activity in hydrodesulphurization was tested. The results were compared with the MoO₃/Al₂O₃ catalysts prepared by the conventional solution impregnation using AHM. It was found that the slurry impregnation is a simple, clean and reliable method to prepare the MoO₃/Al₂O₃ catalysts with good, monolayer type dispersion of molybdena [5-8]. The highest amount of MoO₃ deposited by slurry impregnation corresponded well to the formation of saturated monolayer observed in literature for samples prepared by other methods, impregnation with AHM or thermal spreading [5].

The example of catalytic data is shown in Table 1. Two alumina supports were used to prepare the $15\,\text{wt.}\%$ MoO₃/Al₂O₃ catalysts by the slurry impregnation and the conventional solution

Table 1 Relative rate constants of hydrodesulphurization over slurry impregnation and conventional MoO_3/Al_2O_3 catalysts^a

Preparation	Alumina support	
	Norton SA 6175	Akzo HDS 000.1.5
Conventional impregnation	1.00	1.04
Slurry impregnation, dried at 160°C	1.24	1.36
Slurry impregnation, calcined at 400°C	1.00	1.11

 $[^]a$ Hydrodesulphurization of thiophene at 1 MPa and 350°C. The reference point of activity is the BASF M8-30 MoO $_3/Al_2O_3$ catalyst with the relative rate constant equal to 1. The loading of all catalysts was 15 wt.% MoO $_3$.

impregnation. The commercial BASF M8-30 MoO₃/ Al₂O₃ catalyst was chosen as the reference point of activity. The slurry impregnation samples were tested in the dried (160°C) or calcined (400°C) form. It is seen that the activity of the calcined slurry impregnation samples was about the same as activity of the conventional laboratory made samples and also of the reference commercial catalyst. However, the activity of the dried slurry impregnation samples was higher. Calcination of the slurry impregnation samples probably enhances the interaction between alumina and molybdena (for instance by the formation of molybdenum aluminate). This results in more difficult sulphidation and lower activity of the calcined catalysts as compared with the dried samples.

3. MoO₃/active carbon catalyst

Adsorption of molybdena species from the slurry MoO₃/water is very easy for this support; it is faster than over alumina and the saturated adsorption loading for typical active carbons of surface area of about 1000 m² g⁻¹ is high, of about 30 wt.% MoO₃. It is an important advantage for this support that calcination is not included in the slurry impregnation because oxidative degradation of active carbon impregnated by molybdena starts at relatively low temperature of about 250°C during calcination on air.

Several MoO₃/active carbon samples were prepared and it was found that hydrodesulphurization activity of these catalysts was the same as that of the catalysts prepared by conventional solution impregnation using

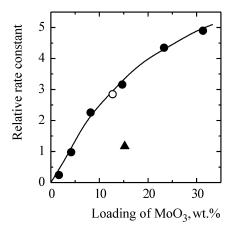


Fig. 2. Comparison of the activity of the MoO_3 /active carbon catalysts prepared by the conventional solution impregnation and new slurry impregnation method in hydrodesulphurization of thiophene at $1.6\,\mathrm{MPa}$ and $350^\circ\mathrm{C}$ [9]: (\blacksquare) Mo/active carbon, slurry impregnation; (\triangle) Mo/active carbon, conventional solution impregnation; (\triangle) reference MoO_3/Al_2O_3 catalyst BASF M8-30.

AHM [7,9]. This is illustrated by the example of catalytic data shown in Fig. 2.

4. MoO₃/ZrO₂ catalyst

The support ZrO₂ is commonly prepared by calcination of Zr(OH)₄. However, it is well known in literature that sintering of finely dispersed zirconia is easy and surface area of the resulting ZrO₂ decreases rather sharply with increasing temperature of calcination [10–14]. This is also illustrated by data from our laboratory in Fig. 3 obtained with samples provided by MEL Chemicals. For the application in catalysis over sulphides, the support should be calcined at the temperature of about $400–500^{\circ}$ C. The conventional preparation of MoO_3/ZrO_2 by impregnation of the calcined ZrO_2 by solution of AHM provides the catalyst of about the same surface area as that of the starting ZrO_2 and it is usually not very high.

However, it is well known in literature that sintering of zirconia during calcination can be inhibited by the addition of oxides of various elements such as La, Si, Al, S, etc. [11,13,14]. This is illustrated by our data in Fig. 3 obtained with samples provided by MEL Chemicals; Al₂O₃ added to the extrudates not only serves as binder but it also stabilises their texture during

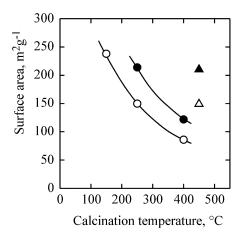


Fig. 3. Dependence of surface area on the temperature of calcination: (\bigcirc) undoped Zr(OH)₄ (MEL Chemicals), (\triangle) extrudates of Zr(OH)₄ containing 15 wt.% Al₂O₃ as a binder (MEL Chemicals); (\blacksquare) 12 wt.% MoO₃/Zr(OH)₄ prepared from pure Zr(OH)₄ by slurry impregnation; (\blacktriangle) 9 wt.% MoO₃/Zr(OH)₄ prepared from Zr(OH)₄ extrudates by slurry impregnation.

calcination as compared with pure Zr(OH)₄. However, the additives also strongly influence chemical character of the surface and this might be a complication for catalytic application.

It was reported in literature that inhibition of sintering can also be achieved by the addition of molybdena to ZrO₂ precursor before calcination. Molybdena stabilises the texture of the ZrO₂ arising during decomposition of the precursor by calcination. One method of this type is "molten salt method" (for review see Refs. [14,15]). The melt of KNO₃, NaNO₃, (NH₄)₆Mo₇O₂₄ and ZrOCl₂ is decomposed at temperatures of 300-550°C and the resulting solid is washed with water and calcined. This method is effective for obtaining high surface area catalysts but it is rather complicated and it produces nitrogenous gases and waste solutions. Another method of this type is impregnation by solution of AHM of wet or dried Zr(OH)₄ instead of calcined ZrO₂. The calcination of the obtained (NH₄)₆Mo₇O₂₄/Zr(OH)₄ provides higher surface area MoO₃/ZrO₂ catalyst as compared with the calcination of $(NH_4)_6Mo_7O_{24}/ZrO_2$ [14,16,17].

It was found in our laboratory that this latter method can be further simplified by application of the principle of slurry impregnation. Molybdenum oxide reacts with zirconium hydroxide in aqueous slurry. The deposited molybdena stabilises texture of ZrO₂

emerging during calcination. This is illustrated by the data in Fig. 3. The stabilising effect of molybdena was found both for pure Zr(OH)₄ and for the Zr(OH)₄ extrudates containing alumina binder.

5. MoO₃/MgO catalyst

High surface area MoO_3/MgO (surface area $200-300\,\mathrm{m}^2\,\mathrm{g}^{-1}$) might be an interesting catalyst or catalyst precursor for a number of industrially relevant reactions including hydrodesulphurization. Conventional impregnation using aqueous solution of AHM has been commonly used for the preparation of MoO_3/MgO in literature (for instance [18–22]). However, magnesia is unique among the supports since it reacts easily with water (see, for instance [23–29]). High surface area MgO is transformed to low surface area $Mg(OH)_2$ in aqueous solutions even at room temperature. A part of the support might dissolve at natural pH of the AHM impregnation solution [21].

It was found in our laboratory that this complication can be overcome using methanol instead of water [30]. The conventional "solution impregnation" using solution of AHM in methanol is not feasible because AHM is practically insoluble in this solvent. However, it was found that it is possible to use the slurry of AHM in methanol instead of its solution. Such method can be classified as "slurry impregnation".

The slurry of AHM in methanol is mixed with MgO support. The solubility of AHM is very low. However, the dissolved AHM is continually removed from the solution by the reaction with MgO surface in pores; molybdena species are deposited and ammonia is evolved. Another AHM is gradually dissolved and consumed by the reaction at MgO surface. At the end of the impregnation the surface of MgO is saturated by molybdena species. The texture of the starting support is stable in the methanol slurry.

The first example illustrating the method is shown in Fig. 4. The reaction of laboratory made MgO extrudates (surface area $250\,\mathrm{m}^2\,\mathrm{g}^{-1}$) with the impregnation slurry AHM/methanol at room temperature was followed by electron microprobe analysis. The impregnated extrudates were dried in rotary vacuum evaporator at $95-100^{\circ}\mathrm{C}$ and were not calcined. Surface area of the impregnated extrudates was about the same ($\pm 10\%$) as that of the starting support. The molyb-

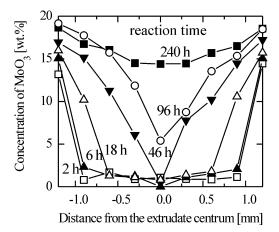


Fig. 4. Profiles of MoO₃ concentration in MgO extrudates (2.5 mm) impregnated by the reaction with the slurry ammonium heptamolybdate/methanol at room temperature and various reaction times. Nominal loading was 15 wt.% MoO₃ and the profiles were measured by electron microprobe analysis.

denum concentration wave gradually moved into the extrudates with increasing impregnation time. After 10 days, almost uniform distribution of molybdena across the extrudates was achieved and the deposited loading of MoO₃ corresponded within the experimental error to the nominal loading of 15 wt.% MoO₃.

The second example illustrating the method is shown in Fig. 5. Magnesia particles of the size fraction 0.16-0.32 mm impregnated with various loading and under various conditions are shown in Fig. 5. The hydrodesulphurization activity of the catalysts was tested in hydrodesulphurization of benzothiophene in fixed bed flow reactor. The feed was solution of benzothiophene in decane, pressure was 1.6 MPa and the temperature was 330°C. Two industrial alumina supported molybdenum catalysts served as reference points of activity. The industrial application of the BASF M8-30 catalyst is the hydrorefining of crude benzene by the BASF-Scholven process. The catalyst Cherox 3500 (Chemopetrol Litvínov, Czech Republic) is a robust pelleted catalyst intended for aromatisation of gasoline fractions and general hydrotreating (it was probably prepared by coprecipitation and it is out of production at present). It is seen in Fig. 5 that using the slurry impregnation it is possible to prepare magnesia supported catalysts with high activity similar to the activity of the reference alumina supported samples.

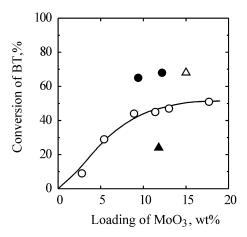


Fig. 5. Relative activity of MoO₃/MgO catalysts prepared by slurry impregnation in the slurry MoO₃/methanol. Model reaction was hydrodesulphurization of benzothiophene in the gas phase at 1.6 MPa and 330°C (for details of testing see [30]). (\bigcirc) MoO₃/MgO catalysts prepared with impregnation time of 10 days at room temperature; (\blacksquare) MoO₃/MgO catalysts prepared with impregnation time of 5 h at 65°C; (\triangle) reference industrial MoO₃/Al₂O₃ catalyst BASF M8-30; (\blacktriangle) reference industrial MoO₃/Al₂O₃ catalyst Cherox 33-00.

6. Conclusions

The new slurry impregnation method of preparation of supported molybdenum catalysts is a simple and clean alternative to the conventional preparation using solutions of ammonium heptamolybdate. Support is impregnated in the slurry MoO₃/water. Solubility of MoO₃ is low but sufficient for transport of molybdena species to the surface where they are adsorbed. The method belongs to the equilibrium adsorption methods and the maximum amount of deposited MoO₃ corresponds to saturated monolayer. Calcination is not necessary and no waste solutions and calcining nitrogenous gases are formed and well-defined monolayer type catalysts are obtained. Various catalysts supported on alumina and active carbon were prepared by the slurry impregnation and were tested in hydrodesulphurization. Slurry impregnation of Zr(OH)4 is a simple interesting way to MoO₃/ZrO₂ catalyst with improved surface area as compared to the conventional impregnation of ZrO₂. High surface area MoO₃/MgO is prepared by the reaction of the support with the slurry ammonium heptamolybdate/methanol. This approach overcomes

the problem of instability of high surface area MgO in aqueous impregnation solutions and provides MoO₃/MgO catalysts with high hydrodesulphurization activity.

Acknowledgements

The financial support by Grant Agency of the Academy of Sciences of the Czech Republic is gratefully acknowledged (grant No. A4072802). The author thanks the companies Norton Chemical Process Products (UK), Akzo Chemicals (the Netherlands), MEL Chemicals (UK), Norit (the Netherlands) and Slovenské lučobné závody (Slovak Republic) for samples of supports. The author thanks, for important contribution, E. Hillerová and T. Klicpera who were co-authors of the presented data on MoO₃/active carbon and MoO₃/MgO catalysts, respectively.

References

- J. Haber, Molybdenum compounds in heterogeneous catalysis, in: E.R. Braithwaite, J. Haber (Eds.), Molybdenum, An Outline of its Chemistry and Uses, Studies in Inorganic Chemistry, Vol. 19, Elsevier, Amsterdam, 1994.
- [2] H. Knözinger, Catalysis: theory to practice, in: M.J. Phillips, M. Ternan (Eds.), Proceedings of the Ninth International Congress on Catalysis, Calgary, Canada, The Chemical Institute of Canada, Ottawa, 1988, p. 20.
- [3] A. Lycourghiotis, Stud. Surf. Sci. Catal. 91 (1995) 95.
- [4] Y. Xie, Y. Tang, Adv. Catal. 37 (1990) 1.
- [5] E. Hillerová, H. Morishige, K. Inamura, M. Zdražil, Appl. Catal. A 156 (1997) 1.
- [6] M. Zdražil, Catal. Lett. 27 (1994) 337.
- [7] E. Hillerová, M. Zdražil, Appl. Catal. A 138 (1996) 13.

- [8] Z. Vít, M. Zdražil, J. Catal. 171 (1997) 305.
- [9] M. Zdražil, Appl. Catal. 115 (1994) 285.
- [10] P.D.L. Mercera, J.G. van Ommen, E.B.M. Doesburg, A.J. Burggraaf, J.R.H. Ross, Appl. Catal. 57 (1990) 127.
- [11] J.C. Duchet, M.J. Tilliette, D. Cornet, Catal. Today 10 (1991) 507.
- [12] T. Yamaguchi, Catal. Today 20 (1994) 199.
- [13] P.J. Moles, M. Ikeda, C.J. Norman, Stud. Surf. Sci. Catal. 92 (1995) 419.
- [14] P. Afanasiev, A. Thiollier, M. Breysse, J.L. Dubois, Top. Catal. 8 (1999) 147.
- [15] P. Afanasiev, Ch. Geantet, M. Breysse, J. Catal. 153 (1995) 17
- [16] M. Valigi, A. Cimino, D. Cordischi, S. De Rossi, C. Ferrari, G. Ferraris, D. Gazzoli, V. Indovina, M. Occhiuzzi, Solid State Ionics 63-65 (1993) 136.
- [17] B. Zhao, X. Wang, H. Ma, Y. Tang, J. Mol. Catal. A 108 (1996) 167.
- [18] H. Shimada, T. Sato, Y. Yoshimura, J. Hiraishi, A. Nishijima, J. Catal. 110 (1988) 275.
- [19] M.J. Ledoux, A. Peter, E.A. Blekkan, F. Luck, Appl. Catal. A 133 (1995) 321.
- [20] T. Klimova, C.D. Solis, J. Ramirez, Catal. Today 43 (1998) 135.
- [21] J.M.M. Llorente, V. Rives, P. Malet, F.J. Gil-Llambías, J. Catal. 135 (1992) 1.
- [22] G. Mestl, T.K.K. Srinivasan, Catal. Rev.-Sci. Eng. 40 (1998) 451.
- [23] G. Leofanti, M. Solari, G.R. Tauszik, F. Garbassi, S. Galvagno, J. Schwank, Appl. Catal. 3 (1982) 131.
- [24] T.E. Holt, A.D. Logan, S. Chakrabortiand, A.K. Datye, Appl. Catal. 34 (1987) 199.
- [25] A.D. Logan, A.K. Datye, J. Catal. 112 (1988) 595.
- [26] S.E. Wanke, R.M.J. Fiedorov, Stud. Surf. Sci. Catal. 39 (1988) 601.
- [27] H. Schaper, J.J. Berg-Slot, W.H.J. Stork, Appl. Catal. 54 (1989) 79.
- [28] J. Bláha, Ceramics-Silikáty 39 (1995) 41.
- [29] M. Maryška, J. Bláha, Ceramics-Silikáty 41 (1997) 121.
- [30] T. Klicpera, M. Zdražil, Catal. Lett. 58 (1999) 47.